Personial Refarencees for Matric Lengith

Objective To assist students as they establish personal references for metric units of length.

1 Teaching the Lesson

Key Activities

Students find personal references (parts of their bodies or other objects) to help them estimate lengths of 1 centimeter, 10 centimeters, and 1 meter.

Key Concepts and Skills

- Identify personal references for metric units of length.
[Measurement and Reference Frames Goal 1]
- Estimate, without tools, the length of objects or distances in centimeters, decimeters, and meters. [Measurement and Reference Frames Goal 1]
- Measure the length of objects or distances in centimeters, decimeters, and meters.
[Measurement and Reference Frames Goal 1]

materials

\square Math Journal 1, pp. 56, 98, and 99
\square Student Reference Book, p. 130
\square Study Link 4.8
\square *, / Fact Triangles
\square tape measure
\square ruler
\square meterstick

See Advance Preparation

Key Vocabulary

personal measurement reference

2 Ongoing Learning \& Practice

materials

Students play Number Top-It (Decimals) to practice comparing and ordering decimals.
Students practice and maintain skills through Math Boxes and Study Link activities.
Ongoing Assessment: Recognizing Student Achievement Use Math Masters, page 506.
[Number and Numeration Goal 6]
\square Math Journal 1, p. 100
\square Student Reference Book, p. 256
\square Study Link Master (Math Masters, p. 131)
\square Game Masters (Math Masters, pp. 491 and 506)
\square number cards 0-9 (4 of each; from the Everything Math Deck, if available)

3 Differentiation Options

BEADINESS
Students explore relative sizes of metric units.

ENRIGHMENT

Students make up clues for a measurement scavenger hunt.

EXTRA PRAGTIGE

Students solve problems involving metric measurements.

matorials

\square Teaching Master (Math Masters, p. 132)
\square 5-Minute Math, pp. 48 and 49
\square tape measure; ruler; meterstick

Additional Information

Advance Preparation For the Math Message, choose something in the classroom that measures between 30 and 60 centimeters in length or height. Measure the object, rounding to the nearest 10 centimeters. Use the measurement to complete the Math Message.

Technology

Assessment Management System Math Masters, page 506
See the iTLG.

Getting Started

Mental Math and Reflexes

Students use their Multiplication/Division Fact Triangles to practice the facts in the Try Again pile. They transfer appropriate triangles to the OK pile, color the OK facts in the table on journal page 56, fasten their new piles with paper clips, and store them.

Without measuring, try to find something in the classroom whose length or height is about (fill in the measurement of the object you chose) centimeters. Be ready to explain how you made your choice.

Study Link 4.8 Follow-Up

Briefly go over the answers. If there is disagreement, have students measure the line segments again.

Student Reference Book, p. 130

Introducing Personal Measurement References

(Student Reference Book, p. 130)

Read page 130 in the Student Reference Book as a class. Discuss why personal measurement references might be useful. Reasons might include the following:
\triangleright It is hard to remember how long a centimeter or a foot is, how much area a square yard takes up, or how heavy a pound feels. Relating measures to common objects makes it easier to remember their relative sizes.
\triangleright Sometimes we need to measure something but don't have a tool. Personal measurement references can be used to estimate the unknown measurement.

Tell students that in this lesson they will look for personal references for 1 centimeter, 10 centimeters (1 decimeter), and 1 meter. Students will use their personal references to estimate the measurements of various objects.

Discuss the mathematical and everyday meanings of the term reference. For example:
\triangleright The class uses a Student Reference Book.
\triangle Today students will find personal measurement references.

Finding Personal References for Metric Units of Length

(Math Journal 1, p. 98)

Determining personal references for 1 centimeter and 10 centimeters

Students use metric rulers or tape measures to find common objects that are about 1 centimeter and 10 centimeters in length. Have them select one or two objects and record them in the Personal References Table on the top half of journal page 98. (The table for U.S. customary units of length on the bottom half of the page will be completed in Lesson 5-1.)
Encourage each student to find his or her own objects so that the references will be personal. Stress that students should look for objects that are easy to find and that are available when needed. Body parts are ideal, although these references will change over time. The idea is to use objects that can help students develop a sense of the sizes of the units and that can help students estimate lengths in metric units when a ruler is not available.

Point out that the objects students choose as personal references must maintain their lengths. Therefore, a pencil would not be a good choice since it will be shorter after it has been sharpened. Have students share their choices.

Determining personal references for 1 meter

This may be more difficult than it appears. Many items commonly used in the United States, such as furniture and building materials, are manufactured to specifications in inches and feet. As a result, few objects end up being exactly 1 meter in length. Thus, students may have to settle for objects that are a little more or less than 1 meter.

Two approaches are recommended:
\triangleright If you have enough metersticks or metric tape measures, have students explore the classroom with their partners, looking for objects or spaces that are about 1 meter in length. Have students record and share their results.
\triangleright Alternatively, have students propose possible objects or spaces while seated. Ask students if they think the proposed object or space is more or less than 1 meter in length. Then measure the object or space yourself.

Math Journal 1, p. 98

Estimating Lengths with Personal References

Have students put away their metric rulers and tape measures. Then ask them to use their personal references to estimate the lengths of several objects. Suggestions:
\triangleright length and width of their journal
\triangleright diameter of a penny or quarter
\triangleright length and width of a calculator
Record students' estimates on the board. Then have students measure their objects with a metric ruler to check the accuracy of their estimates.

Next, select several longer objects in the room. Ask the class to judge the length of each in meters: Is it closer to 1 meter, half a meter, or a meter and a half? Check students' estimates with a meterstick.

Practicing Estimating Lengths

(Math Journal 1, p. 99)

Students use their personal references to estimate a distance or the length or height of an object in centimeters, decimeters, or meters. Then they measure the object or distance to check their estimates.

NOTE As students fill in the table on journal page 99, you may wish to assign several objects or distances that all students must estimate and measure. This will allow for easier assessment of student work.

Math Journal 1, p. 99

2 Ongoing Learning \& Practice

Playing Number Top-It (Decimals)

PARTNER ACTIVITY

(Student Reference Book, p. 256; Math Masters, pp. 491 and 506)

Students play Number Top-It (Decimals) to practice comparing and ordering decimals. See Lesson 4-4 for additional information.

Ongoing Assessment: Recognizing Student Achievement

 Math Masters,

 Math Masters, Page 506

Use the Number Top-It (Decimals) Record Sheet (Math Masters, page 506) to assess students' ability to compare decimals through thousandths. Students are making adequate progress if they are able to record rounds of Number Top-lt (Decimals) with number sentences using $>$ and $<$ correctly. Some students may be able to order decimals to thousandths.
[Number and Numeration Goal 6]

Math Boxes 4•9

 ACTIVITY(Math Journal 1, p. 100)
Mixed Practice Math Boxes in this lesson are paired with Math Boxes in Lesson 4-6. The skill in Problem 5 previews Unit 5 content.

Writing/Reasoning Have students write a response to the following: Explain the strategy you used to order the decimals in Problem 2. Sample answer: First I wrote the four decimals vertically and aligned them by the decimal points. Then I checked the values of the digits in the ones place, tenths place, and hundredths place of each number to write the decimals from smallest to largest.

Study Link 4•9

INDEPENDENT

 ACTIVITY(Math Masters, p. 131)
Home Connection Students use personal references to estimate the lengths of objects, and then they measure each object. Students convert between metric measures.

Encourage students to continue bringing examples of decimals to display in the Decimals All Around Museum.

Math Journal 1, p. 100

Math Masters, p. 131

2. Describe any patterns you see in the measurements and units above. Sample answer: Larger things are measured in meters and decimeters, and smaller things are measured in centimeters and millimeters
3. Make up 2 examples of your own. Measure the objects in a unit of your choice. Answers vary.

Math Masters, p. 132

3 Differentiation Options

BEADINESS

Matching Metric Units
(Math Masters, p. 132)
To explore relative sizes of metric units, have students match units to measurements. Ask them to refer to the actual objects listed on Math Masters, page 132 so students can measure them to decide which unit should be used.

ENRIGHMENT

Designing a Measurement Scavenger Hunt

To apply students' understanding of metric units of linear measure, have them create a scavenger hunt for other students or another class. You might suggest the following procedure:

1. Begin by using personal references to estimate the size of objects.
2. Use a meterstick to check estimates.
3. Write the measure of each object as the first clue.
4. Then write a second clue-something that will help limit the possible choices. For example:
\triangleright This object is about 2 meters high. You wouldn't be able to get into the classroom without it. door
\triangleright This object is about 15 centimeters long. It is useful to have around when solving problems with large numbers.
calculator
Have students read their clues aloud.

EXTRA PRAGTICE

5-Minute Math

To offer students more experience with metric measurements, see 5-Minute Math, pages 48 and 49.

