World Tour

Introduction

About the World Tour

For the rest of the school year, you and your classmates will go on an imaginary tour of the world. As you visit various countries, you will learn about the customs of people in other parts of the world. You will practice globe and map skills to help you locate the places you visit. As you collect and examine numerical information for the countries you visit, you will have many opportunities to apply your knowledge of mathematics.

How the World Tour Is Organized

You will first fly from your hometown to Washington, D.C. The class will then visit five regions of the world: Africa, Europe, South America, Asia and Australia, and, finally, North America.

The class will first visit the continent of Africa, landing in Cairo, Egypt. From there, you will fly to the second region, Europe, landing in Budapest, Hungary. This pattern will be repeated for each of the other regions. The class will complete the tour by flying back to Washington, D.C.

As you visit each country, you will collect information about that country and record it in a set of Country Notes pages in your journal. The World Tour section of your Student Reference Book will serve as a major source for that information.

As you make your world tour, there will be opportunities to learn about countries you have not visited. This World Tour section includes detailed information for 10 selected countries within each of the five regions of the world. It includes a Fascinating Facts insert that lists interesting facts about world geography, population, and climate. And it includes a collection of games played in different parts of the world that require logical or mathematical thinking. You can also look up additional information in a world almanac, National Geographic magazines, travel brochures, guidebooks, and newspapers.

A Chinese farmer waters crops by hand.

Women in Guatemala sell fruits and vegetables at a market.

Travel brochures include both country facts and travel information.

Washington, D.C. Facts

Washington, D.C., is the capital of the United States of America. The capital is where our country's laws are made. It is also where our president lives.

Washington, D.C., has been the capital of the United States since 1800. Before that, the capital was in Philadelphia, Pennsylvania. The capital city was named "Washington, the District of Columbia" in honor of George Washington and Christopher Columbus. "District of Columbia" is usually abbreviated as D.C.

Washington, D.C., has an area of 68 square miles. With a population of about 600,000 people, more people live in our capital city than in the state of Wyoming!

There are many interesting things to do in Washington, D.C. The facts below will help you plan your visit.

Average High/Low Temperatures (${ }^{\circ}$ F)				Average Precipitation (in.)		
Month	High	Low	Month	Precipitation		
Jan	42	25	Jan	3.1		
Feb	46	28	Feb	2.7		
Mar	55	35	Mar	3.6		
Apr	66	43	Apr	3.0		
May	75	53	May	4.0		
Jun	83	62	Jun	3.6		
Jul	88	67	Jul	3.6		
Aug	86	66	Aug	3.6		
Sep	79	59	Sep	3.8		
Oct	68	46	Oct	3.3		
Nov	57	37	Nov	3.2		
Dec	46	29	Dec	3.1		

The White House

Every U.S. president except George Washington has lived here. The White House sits on 18 acres of land. It has 132 rooms, five of which can be seen on a 20 -minute public tour. Every year more than $1,500,000$ people tour the White House. Web site: http://www.whitehouse.gov

Washington, D.C. Facts

Washington Metrorail

This system of underground electric trains opened in 1976. There are 83 stations in the Washington area; some are decorated with beautiful artwork. They are connected by more than 103 miles of train lines. On an average weekday, about 500,000 people ride the Metro trains.
Web site: http://www.wmata.com

Washington Monument

This 555-foot-tall monument was built to honor George Washington, the first president of the United States. It is one of the tallest masonry structures in the world. You can take an elevator to a viewing area at the 500-foot level. The monument's cornerstone was laid in 1848, but building was interrupted by the Civil War (1861-1865). Construction workers started building again in 1880 and completed it in 1884. The Washington Monument receives more than 800,000 visitors each year.
Web site: http://www.nps.gov/wamo

Jefferson Memorial

This memorial was built in honor of Thomas Jefferson.
Jefferson was the third president of the United States and the author of the Declaration of Independence. The memorial was dedicated in 1943, exactly 200 years after Jefferson was born. Inside the memorial, a statue of Jefferson stands 19 feet tall. Web site: http://www.nps.gov/thje/home.htm

Lincoln Memorial

This memorial was built in 1922 in honor of Abraham Lincoln. Lincoln was the 16th U.S. president. Inside the memorial is a 19 -foot-high statue of Lincoln seated in a large armchair. The statue is made of 28 blocks of white marble from the state of Georgia.
Web site: http://www.nps.gov/linc/home.htm

The United States Capitol

The Capitol Building is where the senators and representatives in Congress meet to make laws. George Washington laid its cornerstone in 1793. The building's cast iron dome weighs 9 million pounds. Brass doors that weigh 10 tons lead to the rotunda, which is 180 feet high and 96 feet in diameter.
Web site: http://www.aoc.gov

Library of Congress

The Library of Congress is the world's largest library. It contains more than 128 million items in 450 languages. It has about 535 miles of bookshelves. The Library is composed of three buildings. One of these, the James Madison Building, encloses an area greater than 35 football fields. The Library has more than 18 million books, 12 million photographs, 3 million sound recordings, and 5 million maps. It also has about 125,000 telephone books and 100,000 comic books. The Library of Congress collection grows by more than 10,000 items every day. Web site: http://www.loc.gov

National Museum of Natural History

Exhibits in the National Museum of Natural History include an 8-ton African bull elephant, the 45.5-carat Hope Diamond, a 360 million-year-old fossilized fish, a 90 -foot-long skeleton of a diplodocus, a 30 -foot-long giant squid, moon rocks, a mural of a 3.5 billion-year-old shoreline, and a life-size 92 -foot model of a blue whale. The Insect Zoo has live insects as well as scorpions and tarantulas. In the Discovery Room, you can try on costumes from around the world. The museum is part of the Smithsonian Institution. Web site: http://www.mnh.si.edu

National Air and Space Museum

The National Air and Space Museum is the most popular museum in the world. Every year more than 10 million people visit it. Its collection includes the Wright Flyer, which is the original plane flown by the Wright brothers at Kitty Hawk, North Carolina, in 1903. It also includes the Spirit of St. Louis, the plane in which Charles Lindbergh made the first nonstop flight across the Atlantic in 1927. Columbia, the Apollo 11 command module that brought back the first men to walk on the moon in 1969, is also on display.

Web site: http://www.nasm.si.edu

Facts About the World

Continents are large land masses. There are seven continents on the Earth, although Europe and Asia are sometimes thought of as one continent. Most continents contain many countries, but there are no countries at all in Antarctica.
A country is a territory and the people who live there under one government. The number of countries in the world often changes as countries split apart or join with other countries. At this time, there are about 200 countries in the world.
Population is the number of people who live in a certain region. Population growth is the change in the population every year after all births and deaths are accounted for.
The population growth rate is the increase (or decrease) in population per year, written as a percent.
The world's population is now increasing by about 200,000 people per day, or about 75 million people per year. Over the last 40 years, the world's population has about doubled. It reached the 6 billion mark in 1999. World population is expected to reach about 9 billion people by the year 2050 .

The Continents				
Continent	Population*	Percent of World Population	Area (sq miles)	Percent of Land Area
North America	509,000,000	8.0\%	8,300,000	14.8\%
South America	367,000,000	5.8	6,800,000	12.1
Europe	799,000,000	12.5	4,100,000	7.3
Asia	3,797,000,000	59.5	16,700,000	29.8
Africa	874,000,000	13.7	11,500,000	20.5
Australia	32,000,000	0.5	3,300,000	5.9
Antarctica	0	0.0	5,400,000	9.6
World Totals	$6,378,000,000$ (about 6.4 billion)	100.0\%	56,100,000	100.0\%

[^0]
Latitude and Longitude

You sometimes use a world globe or a flat map to locate countries, cities, rivers, and so forth. Reference lines are drawn on globes and maps to make places easier to find.

Latitude

Lines that go east and west around the Earth are called lines of latitude. The equator is a special line of latitude. Every point on the equator is the same distance from the North Pole and the South Pole. Lines of latitude are called parallels because each one is a circle that is parallel to the equator.

Latitude is measured in degrees. The symbol for degrees is $\left({ }^{\circ}\right)$. Lines north of the equator are labeled ${ }^{\circ} \mathrm{N}$. Lines south of the equator are labeled ${ }^{\circ} \mathrm{S}$. The number of degrees tells how far north or south of the equator a place is. The area north of the equator is called the Northern Hemisphere. The area south of the equator is called the Southern Hemisphere.

Examples The latitude of Cairo, Egypt, is $30^{\circ} \mathrm{N}$.
We say that Cairo is 30 degrees north of the equator.

The latitude of Durban, South Africa, is $30^{\circ} \mathrm{S}$. Durban is in the Southern Hemisphere.

The latitude of the North Pole is $90^{\circ} \mathrm{N}$. The latitude of the South Pole is $90^{\circ} \mathrm{S}$. The poles are the points farthest north and farthest south on Earth.

Longitude

A second set of lines runs from north to south. These are semicircles (half-circles) that connect the poles. They are called lines of longitude or meridians. The meridians are not parallel since they meet at the poles.

The prime meridian is the special meridian labeled 0°. The prime meridian passes through Greenwich, near London, England. Another special meridian falls on, or close to, the International Date Line. This meridian is labeled 180° and is exactly opposite the prime meridian, on the other side of the world.

Longitude is measured in degrees. Lines west of the prime meridian are labeled ${ }^{\circ} \mathrm{W}$. Lines east of the prime meridian are labeled ${ }^{\circ} \mathrm{E}$. The number of degrees tells how far west or east of the prime meridian a place is located. The area west of the prime meridian is called the Western Hemisphere. The area east of the prime meridian is called the Eastern Hemisphere.

Examples The longitude of London is 0° because London lies close to the prime meridian.

The longitude of Durban, South Africa, is $30^{\circ} \mathrm{E}$. Durban is in the Eastern Hemisphere.

The longitude of Gambia (a small country in Africa) is about $15^{\circ} \mathrm{W}$. We say that Gambia is 15 degrees west of the prime meridian.

When both latitude and longitude lines are shown on a globe or map, they form a pattern of crossing lines called a grid. The grid can help you locate places on the globe or map. Any place on the map can be located by naming its latitude and longitude.

Check Your Understanding

Use the grid below to find the approximate latitude and longitude for the cities shown on the map. For example, Denver, Colorado, is about 40° North and 105° West.

Map Projections

A world globe shows the Earth accurately. All of the distances and directions are shown correctly. The sizes and shapes of countries, bodies of water, and other features are all as correct as possible.
A flat map is often easier to use than a globe. But all flat maps have a common problem. Since the Earth is a sphere, no flat map can show the whole Earth as it really is in the same way that a globe can. Some features will be distorted on a flat map.

Pretend you are a map maker trying to turn a world globe into a flat map of the world. Imagine peeling the Earth map off the globe and laying it flat. That would be like peeling an orange and then flattening the peel. You can almost do this if you tear the peel into many small pieces. But even those pieces are rounded and will not lie perfectly flat.

Map makers have invented many ways to show the spherical world as a flat map. These flat views of the Earth are called map projections. Every map projection has some distortions because the map maker must cut and stretch the shape of the globe to make it flat.

The Mercator Projection

One of the most common types of flat maps is the Mercator projection. It was invented by Gerardus Mercator in 1569. Mercator's map projection was useful to sailors, but as a picture of our world, it creates many false impressions.

A Mercator map exaggerates areas that are nearer to the poles. For example, Greenland looks to be about the same size as Africa. But, Africa is actually about 15 times the size of Greenland.

The Robinson Projection

Another kind of flat map is the Robinson projection. It makes the world look somewhat like a globe. Areas near the poles are distorted, but they are distorted a lot less than they are on a Mercator map.

The National Geographic Society and many map companies use the Robinson projection.

Note

Look at the Mercator map on the opposite page.

- Notice that the meridians (lines of longitude) are an equal distance apart. On a globe, the meridians get closer as they get near the poles.
- Notice that the parallels (lines of latitude) are farther apart toward the poles. On a globe, the parallels are an equal distance apart.

Mercator Projection

Robinson Projection

Time Zones of the World

The Earth is divided into 24 time zones. We need time zones because the Earth is spinning, and the sun does not shine on all of the Earth at the same time. It takes one day, or 24 hours, for the Earth to make one complete spin. Each time zone represents one of the 24 hours of that day.
This map shows all 24 time zones. The times are given at the top and bottom of the map. As you read from left to right, the time is one hour later in each zone. This is because the Earth rotates toward the east, which is left to right on the map. The arrow near the bottom of the map shows the direction of the Earth's rotation.

The map tells you what time it is in a location when it is 12 noon in London, England.

- Put your finger on the place you want to find the time for. See if it is in a gold strip or a white strip.
- Keep your finger in the strip you start in. Follow it up to the top of the map or down to the bottom. Read the time.
If you know the time in one location, you can find the time in another location.
- Put your finger on the place that is farther west.
- Slide your finger to the right until you reach the place that is farther east.
- Count the number of gold and white time zones you enter as you slide your finger.
- The number of time zones you enter is the number of hours that the place to the east is ahead of the place to the west.

Political and Physical Maps

Maps can help you study the geography of a region. You can use a map to find out about a region's size and its land and water features.

There are many types of maps. Each one has a special purpose.

- Political maps identify countries and cities. They show the boundaries (borders) of countries. They may also show areas within a country such as states or counties. Sometimes these maps also show rivers and lakes.
- Physical maps show features such as rivers, lakes, mountain ranges, and deserts. They may use lines or shading to identify mountains, valleys, and low spots. Some physical maps use different colors to show elevation (height above sea level) on a map. Many physical maps do not include country boundaries or city names.

The maps in this World Tour section of your Student Reference Book are both political and physical maps. There is a map for every continent except Antarctica. Countries and capital cities are identified. Major rivers, lakes, mountain ranges, and deserts are shown. The maps use different colors to help you locate countries more easily, but colors are not used to show elevations.
Each map has two features that are found on most maps:

- A legend or key explains the symbols and markings on the map. Several symbols and abbreviations that are often used in map legends are listed in the margin. The legend is one of the first places to look when reading a map.
- A map scale compares distances on the map with actual distances. The scale is shown in a ruler-like diagram.
The scale is also given in words such as " 1 inch represents 400 miles."

Note

Map symbols:

- Capital cities are marked with a
- Mountain peaks are marked with a Δ.

Map abbreviations:
R. means river. L. means lake.

Mt. means mountain.
Example of a map scale:

1 inch represents 400 miles.

Country Profiles

The countries you can visit on your world tour are listed below by geographical region. Languages in bold type are the official languages of a country. Some countries have no official language, while others have more than one. All measurements in the country profiles are approximate.

RECION 1 Africa

Algeria
Area: 919,600 sq mi
Population: 32,129,000
Capital: Algiers (Pop. 3,060,000)
Languages: Arabic, French, Berber
Monetary unit: Dinar
Egypt
Area: 386,700 sq mi
Population: 76,117,000
Capital: Cairo (Pop. 10,834,000)
Languages: Arabic, English,
French
Monetary unit: Pound
Ethiopia
Area: 435,200 sq mi
Population: 67,851,000
Capital: Addis Ababa
(Pop. 2,723,000)
Languages: Amharic, Tigrinya, Orominga
Monetary unit: Birr
Ghana
Area: 92,500 sq mi
Population: 20,757,000

Capital: Accra (Pop. 1,847,000)
Languages: English, Akan, Ewe, Ga, Moshi-Dagomba Monetary unit: Cedi
Kenya
Area: 225,000 sq mi
Population: 32,022,000
Capital: Nairobi (Pop. 2,575,000)
Languages: Swahili, English,
numerous indigenous languages
Monetary unit: Shilling
Liberia
Area: 43,000 sq mi
Population: 3,391,000
Capital: Monrovia (Pop. 572,000)
Languages: English, tribal
languages
Monetary unit: Liberian Dollar
Morocco
Area: 172,400 sq mi
Population: 32,209,000
Capital: Rabat (Pop. 1,759,000)
Languages: Arabic, Berber
Monetary unit: Dirham

Senegal

Area: 75,700 sq mi
Population: 10,852,000
Capital: Dakar (Pop. 2,167,000)
Languages: French, Pulaar,
Wolof, Diola, Mandingo
Monetary unit: CFA franc
South Africa
Area: 471,000 sq mi
Population: 42,719,000
Capitals: Pretoria
(Pop. 1,209,000), administrative; Cape Town (Pop. 2,967,000), legislative; Bloemfontein, judicial Languages: 11 official languages including Afrikaans, English, Ndebele, Sotho, Pedi
Monetary unit: Rand
Zimbabwe
Area: $150,800 \mathrm{sq} \mathrm{mi}$
Population: 12,672,000
Capital: Harare (Pop. 1,469,000)
Languages: English, Sindebele, Shona
Monetary unit: Zimbabwe Dollar

REGION 2 Europe

France

Area: 211,200 sq mi
Population: 60,424,000
Capital: Paris (Pop. 9,794,000)
Language: French
Monetary unit: Euro
Greece
Area: 50,900 sq mi
Population: 10,648,000
Capital: Athens (Pop. 3,215,000)
Languages: Greek, English, French
Monetary unit: Euro
Hungary
Area: 35,900 sq mi
Population: 10,032,000
Capital: Budapest
(Pop. 1,708,000)
Language: Hungarian (Magyar)
Monetary unit: Forint

Iceland
Area: 40,000 sq mi
Population: 294,000
Capital: Reykjavik (Pop. 184,000)
Language: Icelandic
Monetary unit: Krona
Italy
Area: 116,300 sq mi
Population: 58,057,000
Capital: Rome (Pop. 2,665,000)
Languages: Italian, German,
French, Slovene
Monetary unit: Euro
Netherlands
Area: 16,000 sq mi
Population: 16,318,000
Capital: Amsterdam
(Pop. 1,145,000)
Language: Dutch
Monetary unit: Euro
Norway
Area: 125,200 sq mi
Population: 4,575,000

Capital: Oslo (Pop. 795,000)
Language: Norwegian
Monetary unit: Kroner
Poland
Area: 120,700 sq mi
Population: 38,626,000
Capital: Warsaw (Pop. 2,200,000)
Language: Polish
Monetary unit: Zloty
Spain
Area: 194,900 sq mi
Population: 40,281,000
Capital: Madrid (Pop. 5,103,000)
Languages: Castilian Spanish,
Basque, Catalan, Galician
Monetary unit: Euro
United Kingdom
Area: 94,500 sq mi
Population: 60,271,000
Capital: London (Pop. 7,619,000)
Languages: English, Welsh,
Scottish, Gaelic
Monetary unit: Pound

REGION 3 South America

Argentina

Area: 1,068,300 sq mi
Population: 39,145,000
Capital: Buenos Aires
(Pop. 13,047,000)
Languages: Spanish, English, Italian
Monetary unit: Peso
Bolivia
Area: $424,200 \mathrm{sq} \mathrm{mi}$
Population: 8,724,000
Capital: La Paz (Pop. 1,477,000)
Languages: Spanish, Quechua, Aymara
Monetary unit: Boliviano
Brazil
Area: $3,286,500 \mathrm{sq} \mathrm{mi}$
Population: 184,101,000
Capital: Brasília (Pop. 3,099,000)
Languages: Portuguese, English,
Spanish, French
Monetary unit: Real

Chile

Area: 292,300 sq mi
Population: 15,824,000
Capital: Santiago
(Pop. 5,478,000)
Language: Spanish
Monetary unit: Peso
Colombia
Area: 439,700 sq mi
Population: 42,311,000
Capital: Bogota (Pop. 7,290,000)
Language: Spanish
Monetary unit: Peso
Ecuador
Area: 109,500 sq mi
Population: 13,213,000
Capital: Quito (Pop. 1,451,000)
Languages: Spanish, Quechua,
other Amerindian
Monetary unit: U.S. Dollar
Paraguay
Area: 157,000 sq mi
Population: 6,191,000
Capital: Asunción (Pop. 1,639,000)
Languages: Spanish, Guarani
Monetary unit: Guarani

Peru
Area: 496,200 sq mi
Population: 27,544,000
Capital: Lima (Pop. 7,899,000)
Languages: Spanish, Quechua,
Aymara
Monetary unit: Nuevo Sol
Uruguay
Area: $68,000 \mathrm{sq} \mathrm{mi}$
Population: 3,399,000
Capital: Montevideo
(Pop. 1,341,000)
Language: Spanish
Monetary unit: Peso
Venezuela
Area: 352,100 sq mi
Population: 25,017,000
Capital: Caracas
(Pop. 3,226,000)
Language: Spanish
Monetary unit: Bolivar

REGION 4 Asia and Australia		
Australia	Languages: Hindi, English, 14 regional languages Monetary unit: Rupee Iran	
Area: 2,967,900 sq mi		Area: 198,500 sq mi
Population: 19,913,000		Population: 64,866,000
Capital: Canberra (Pop. 373,000)		Capital: Bangkok
Languages: English, aboriginal	Area: 636,000 sq mi Population: 67,503,000	(Pop. 6,486,000)
languages		Languages: Thai, English
Monetary unit: Australian Dollar	Capital: Tehran (Pop. 7,190,000)	Monetary unit: Baht
Bangladesh	Languages: Farsi, Kurdish,	Turkey
Area: 55,600 sq mi	Turkic, Luri	Area: 301,400 sq mi
Population: 141,340,000	Monetary unit: Rial	Population: 68,894,000
Capital: Dhaka (Pop. 11,560,000)	Japan	Capital: Ankara (Pop. 3,428,000) Languages: Turkish, Arabic,
Languages: Bangla, English	Area: 145,900 sq mi	
Monetary unit: Taka	Population: 127,333,000	Kurdish
China	Capital: Tokyo (Pop. 34,997,000) Language: Japanese	Monetary unit: Lira
Area: 3,705,400 sq mi		Vietnam
Population: 1,298,848,000	Monetary unit: Yen	Area: 127,200 sq mi
Capital: Beijing (Pop. 10,848,000)	Russia	Population: 82,690,000
Languages: Mandarin, Gan, Wu,	Area: 6,592,800 sq mi	Capital: Hanoi (Pop. 3,977,000)
Haka, Yue, Minbei, Xiang, Minnan	Population: 143,782,000Capital: Moscow	Languages: Vietnamese,
Monetary unit: Renminbi (Yuan)		Chinese, French, English
India	Capital: Moscow (Pop. 6,468,000)	Monetary unit: Dong
Area: 1,269,300 sq mi	Languages: Russian, many	
Population: 1,065,071,000	others	
Capital: New Delhi	Monetary unit: Ruble	
(Pop. 12,441,000)		
	REGION 5 North America	
Canada	Language: Spanish Monetary unit: Colon	Mexico
Area: 3,851,800 sq mi		Area: 761,600 sq mi
Population: 32,508,000	Guatemala	Population: 104,960,000 Capital: Mexico City
Capital: Ottawa (Pop. 1,093,000)	Area: 42,000 sq mi	
Languages: English, French	Population: 14,281,000	
Monetary unit: Dollar	Capital: Guatemala City (Pop. 951,000)	Languages: Spanish, Mayan dialects
Costa Rica		
Area: 19,700 sq mi	Languages: Spanish, Mayan languages	Monetary unit: New Peso
Population: 3,957,000		Panama
Capital: San José	Monetary unit: Quetzal Haiti	Area: 30,200 sq mi Population: 3,000,000 Capital: Panama City (Pop. 930,000) Languages: Spanish, English Monetary unit: Balboa United States of America
(Pop. 1,085,000)		
Language: Spanish	Area: $10,700 \mathrm{sq} \mathrm{mi}$ Population: 7,656,000 Capital: Port-au-Prince (Pop. 1,961,000)	
Monetary unit: Colon		
Cuba		
Area: 42,800 sq mi		
Population: 11,309,000	Languages: French, Haitian Creole	
Capital: Havana (Pop. 2,189,000)		Area: 3,717,800 sq mi
Language: Spanish	Monetary unit: Gourde Jamaica	Population: 293,028,000 Capital: Washington, D.C. (Pop. 563,000) Languages: English, Spanish Monetary unit: Dollar
Monetary unit: Peso		
El Salvador	Area: $4,200 \mathrm{sq} \mathrm{mi}$ Population: 2,713,000 Capital: Kingston (Pop. 575,000) Languages: English, Jamaican Creole Monetary unit: Jamaican Dollar	
Area: 8,100 sq mi		
Population: 6,588,000		
Capital: San Salvador (Pop. 1,424,000)		
(Pop. 1,424,000)		

World Tour

Region 2: Europe

Symbols:

Capital cities are marked with a sign.
Mountain peaks are marked with a Δ sign.

Abbreviations:

R. means river.
$M t$. means mountain.
Mts. means mountains.
Letter Styles:
Country: ITALY
City: Rome
Physical Features:
ATLANTIC OCEAN
Seine R.
ALPS
Mont Blanc

```
Elevations:
\(18,510 \mathrm{ft}\) Mt. El'brus (Russia)
\(11,053 \mathrm{ft}\) Etna (Italy)
    8,104 ft Glittertind (Norway)
    6,952 ft Hvannadalshnúkur (Iceland)
\(14,690 \mathrm{ft}\) Matterhorn
                                    (Italy-Switzerland border)
15,771 ft Mont Blanc (France-Italy border)
    \(9,570 \mathrm{ft}\) Olympus (Greece)
11,168 ft Pico de Aneto (Spain)
    4,202 ft Vesuvius (Italy)
```


World Tour

Region 4: Asia

Symbols:

Capital cities are marked
with a sign.
Other cities are marked with a • sign.
Mountain peaks are marked with a Δ sign.

Abbreviations:
R. means river.
Mt. means mountain.
Mts. means mountains.
U.A.E. means United Arab Emirates.

BHU. means Bhutan.
Letter Styles:
Country: CHINA
City: Beijing
Physical Features:
PACIFIC OCEAN
Ganges R.
HIMALAYAS
Mt. Everest

Elevations:

$18,510 \mathrm{ft}$	Mt. El'brus (Russia)
$29,028 \mathrm{ft}$	Mt. Everest (China-
	Nepal border)
$12,388 \mathrm{ft}$	Mt. Fuji (Japan)
$24,406 \mathrm{ft}$	Jengish Chokusu
	(Kyrgyzstan)
$19,584 \mathrm{ft}$	Klyuchevskaya (Russia)
$28,250 \mathrm{ft}$	K2 (China-Pakistan
	border)
$10,771 \mathrm{ft}$	Shiveluch (Russia)
$6,013 \mathrm{ft}$	Tiatia (Russia)

Symbols:

Capital cities are marked
with a sign.
Other major cities are marked with a • sign.
Smaller cities are marked with a o sign.
Mountain peaks are marked with a Δ sign.
Low points are marked with an \times sign.

Abbreviations:
R. means river.
Mt. means mountain.
Letter Styles:
Country: AUSTRALIA
State: Victoria
City: Canberra
Physical Features:
PACIFIC OCEAN
Darling R.
GREAT SANDY DESERT
Mt. Kosciusko

Elevations:

2,844 ft Ayers Rock (Australia)
$5,322 \mathrm{ft} \mathrm{Mt}$. Bartle (Australia)
4,052 ft Mt. Bruce (Australia)
12,349 ft Mt. Cook (New Zealand)
$4,131 \mathrm{ft} \mathrm{Mt}$. Dalrymple (Australia)
$2,546 \mathrm{ft} \mathrm{Mt}$. Hann (Australia)
7,310 ft Mt. Kosciusko (Australia)
$5,305 \mathrm{ft} \mathrm{Mt}$. Ossa (Australia)
16,500 ft Puncak Jaya (Indonesia)
$5,276 \mathrm{ft}$ Round Mountain (Australia)
9,175 ft Ruapehu (New Zealand)
14,793 ft Mt. Wilhelm
(Paupua New Guinea)
$4,724 \mathrm{ft} \mathrm{Mt} .\mathrm{Woodroffe} \mathrm{(Australia)}$
$4,957 \mathrm{ft} \mathrm{Mt} .\mathrm{Ziel} \mathrm{(Australia)}$
-52 ft Lake Eyre (Australia)

World Tour

Region 5: North America

Geographical Measurements

Have you ever wondered how the heights of mountains or the lengths of rivers are measured? How accurate are these measurements? Vertical measurements, such as heights and depths, are recorded as distances above or below sea level. The term elevation means height above sea level.

Many measurements are made with surveying instruments. These measurements can be made more accurately by using data collected by satellites.

- The parts of a city are not all the same height above sea level. Many cities in the United States have an elevation marker somewhere in the downtown area. The elevation marker tells the height of the city above sea level and is accurate to the nearest foot. For example, Denver, Colorado, has an elevation of 5,260 feet. Since 1 mile $=5,280$ feet, Denver is almost exactly 1 mile high.
- The height of a mountain is the elevation at its highest point. The land around mountains is often very rugged. So the reported heights of mountains may be less accurate than the reported elevations of cities.
- The depth of an ocean is measured by sending sound signals to the ocean floor. The time it takes for these signals to reach the bottom and bounce back is used to determine the ocean's depth. Depth measurements are usually accurate to the nearest 10 feet.

Other measurements are made without measuring the object.

- The length of a river is usually measured using very accurate maps, created with the help of satellite photographs. The instrument used to measure length is the size of a ballpoint pen but with a very small wheel instead of a ball at its tip. This instrument is moved on the map along the full length of the river. Using the map scale, the number of times the wheel rotates is converted into the actual length of the river.
Length-of-river measurements are usually accurate to the nearest mile for each 500 miles of river. For example, the length of a 3,000-mile-long river is probably accurate to the nearest 6 miles.

In recent years, laser altimeters have been used to measure the elevations of mountains from aircraft and satellites. These measures are accurate to within 2 meters.

River-length measurements are accurate to within $\frac{1}{5}$ of 1%, or $\frac{1}{5}$ of a mile for each 100 miles measured.

Geographical Area Measurements

The heights of mountains and the depths of oceans are obtained directly. We find heights and depths by measuring the Earth itself.

The areas of countries and the areas of oceans are found indirectly. We measure very accurate maps or satellite pictures. The countries and oceans themselves are not measured.

Countries, oceans, and deserts have irregular boundaries. One way that scientists measure areas is to count grid squares. They place a transparent grid of squares on a map. Then they count the squares and parts of squares that cover the region being measured. The squares are drawn to the same scale as the map.

There are several reasons that it is hard to measure the following regions accurately:

Area of a country. Sometimes people disagree about the exact boundary of a country. So the area may depend on which boundary is being used.

Area of a lake, sea, or ocean. Some bodies of water have shorelines that shift greatly depending on the level of the water. So it is very hard to measure accurately the area that is covered by water.
The world's oceans are not separated from one another by shorelines. Sometimes people disagree on the boundaries between the oceans. This makes it difficult to measure the areas of oceans.

Area of a desert. Measuring desert areas is very hard. Desert boundaries may change because the climate changes. When land is cultivated, a desert boundary shifts. Also, scientists do not agree on what a desert actually is. Some define a desert as land that cannot be used for raising crops. Others define it as land that cannot be used for either crops or grazing. There are deserts that are hot and dry only part of the year. Some deserts are dry all year because it is very hot. Other deserts are dry all year because it is very cold and the water is always frozen. Very cold deserts are known as tundras.

The shoreline of a body of water may shift greatly during different seasons of the year and over the years.

Desert boundaries often change because of climate changes.

Climate and Elevation of Capital Cities

The climate of a city or a country refers to the average weather conditions in that place. Two kinds of weather data are shown on the opposite page: temperature and rainfall. Elevation data are also shown.

Temperature Data

Average temperatures are given in degrees Fahrenheit (${ }^{\circ} \mathrm{F}$).

- Each column lists average temperatures for a 3-month period.
- The first number is the average high temperature for that period. The second number is the average low temperature for that period.

Examples The average high and low temperatures for Cairo, Egypt, for March through May are about $81^{\circ} \mathrm{F}$ and $59^{\circ} \mathrm{F}$. The highest temperature listed for Santiago, Chile, is $84^{\circ} \mathrm{F}$. This is the average high temperature for December through February. Santiago is in the Southern Hemisphere. Countries south of the equator have summer in December, January, and February.

Rainfall Data

Average rainfall is given in inches per month. All moisture that falls as rain or as snow is counted as rainfall. When snow falls, a sample is melted and the depth of the water is measured.

Examples The average rainfall in Monrovia, Liberia, is 30.7 inches per month from June through August. That's about 1 inch per day, on average. The average rainfall in Rome, Italy, is 1 inch per month from June through August. The total rainfall during these 3 months is about $1 \mathrm{in} .+1 \mathrm{in} .+1$ in., or 3 inches.

Elevation Data

The table also lists the elevation for each capital city. A city's elevation is its height above sea level.

Examples The highest elevation listed is 13,166 feet for La Paz, Bolivia. The elevation listed for Amsterdam, Netherlands, is 7 feet. Amsterdam is nearly at sea level.

Santiago, Chile

Amsterdam, Netherlands

*Parts of Amsterdam are as much as 13 ft below sea level.

Literacy and Standard of Living Data

The table on the opposite page lists information about TVs, radios, telephones, and cars. Each number in the table shows what you would expect to find for a group of 1,000 people.

Examples There are only 242 radios in Algeria for every 1,000 people. But there are 2,116 radios in the U.S. for every 1,000 people. That's more than 2 radios for each person in the U.S. Many people in the U.S. have more than 1 radio.

You can use the data table to draw graphs and compare countries.

Example This bar graph shows TV data for Region 1 (Africa). The graph shows that Algeria, Egypt, Ghana, Morocco, and South Africa all have many more TVs per 1,000 people than the other five countries have.

African soccer fans watching a game on TV

The last column in the table tells about the level of education in each country. A literate person is one who can read and write. The percent of literacy is the number of people out of 100 who are literate.

Example In Mexico, 92% of the people are literate. This means that about 92 of every 100 people can read and write.

Literacy is the ability to read and write.

Per 1,000 People

	Country					
[Algeria	107	242	68	54	70
	Egypt	170	317	114	22	58
	Ethiopia	5	185	6	1	43
	Ghana	115	680	15	4	75
	Kenya	22	216	10	8	85
	Liberia	26	329	2	5	58
	Morocco	165	247	37	38	52
	Senegal	41	141	21	10	40
	South Africa	138	355	107	93	86
	Zimbabwe	35	389	24	43	91
	France	620	946	561	465	99
	Greece	480	475	488	321	98
	Hungary	447	690	369	247	99
	Iceland	505	1,075	649	541	100
	Italy	492	880	458	561	99
	Netherlands	540	980	613	375	99
	Norway	653	917	721	409	100
	Poland	387	522	318	272	100
	Spain	555	331	437	451	98
	United Kingdom	661	1,437	579	408	99
	Argentina	293	681	204	138	97
	Bolivia	118	675	69	36	87
	Brazil	333	434	211	63	86
	Chile	240	354	221	44	96
	Colombia	279	539	208	18	93
	Ecuador	213	406	114	24	93
	Paraguay	205	182	44	40	94
	Peru	147	273	65	27	91
	Uruguay	531	603	278	192	98
	Venezuela	185	296	112	57	93
	Australia	716	1,391	542	494	100
	Bangladesh	7	50	5	1	43
	China	291	342	202	5	86
	India	75	120	46	5	60
	Iran	154	265	216	14	79
	Japan	719	956	558	420	100
	Russia	421	417	247	148	100
	Thailand	274	234	102	41	96
	Turkey	328	510	274	66	87
	Vietnam	184	107	53	1	94
$\begin{aligned} & n \\ & \frac{1}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Canada	709	1,038	615	519	97
	Costa Rica	229	774	253	86	96
	Cuba	248	352	51	1	97
	El Salvador	191	478	114	22	80
	Guatemala	61	79	59	45	71
	Haiti	5	53	17	12	53
	Jamaica	191	796	164	52	88
	Mexico	272	329	142	105	92
	Panama	13	299	129	74	93
	United States	844	2,116	620	757	97

*Includes telephone main lines, but not cellular telephones.
**Data are hard to measure and may vary greatly.

Population Data

The table on the opposite page lists population information for each country.

Life expectancy is the average number of years a person can expect to live. It is listed separately for males and females because women usually live longer than men.

Examples In the United States, women live an average of 80 years, and men live an average of 75 years. In Russia, women live an average of 13 years longer than men. Zimbabwe is the only country where men on average live longer than women.

The percent of people ages $\mathbf{0 - 1 4}$ is the number of people out of every 100 who are very young.

Examples In Liberia, 43% of the people are 14 or younger. That's nearly 50%, or one-half, of the people who are very young. In Italy, only 14% of the people are very young. Italy's fraction of very young people is much smaller than Liberia's fraction.

Percent urban is the number of people out of 100 who live in towns or cities. Percent rural is the number of people out of 100 who live in the country. These two percents add up to 100%.

Example In the United States, 80 of 100 people live in towns or cities, while 20 out of 100 people live in the country.
$80 \%+20 \%=100 \%$
The population in most countries grows larger each year. The percent population growth is one way to measure how fast the population is growing.

Farming couple in Siberia

U.S. farmer feeding cattle

Example The population in Haiti increases by 2% each year.

For every 100 Haitians at the beginning of the year,
Country

		Country						
		Algeria	34	71	74	1.3	59	41
		Egypt	34	68	73	1.9	42	58
		Ethiopia	47	40	42	1.9	16	84
	E	Ghana	40	55	57	1.4	45	55
	O	Kenya	41	45	45	1.2	39	61
	0	Liberia	43	47	49	2.7	47	53
	-	Morocco	34	68	73	1.7	58	42
		Senegal	44	55	58	2.5	50	50
		South Africa	32	44	44	-0.2	57	43
		Zimbabwe	38	39	37	0.7	35	65
		France	19	76	83	0.3	76	24
		Greece	15	76	82	0.0	61	39
	N	Hungary	16	68	77	-0.3	65	35
	-	Iceland	23	78	82	0.7	93	7
	\bigcirc	Italy	14	77	83	-0.1	92	8
	\bigcirc	Netherlands	18	76	81	0.3	66	34
	0	Norway	20	77	82	0.2	79	21
		Poland	18	70	79	0.1	62	38
		Spain	15	76	83	0.1	77	23
		United Kingdom	19	76	81	0.1	89	11
Population Data	m-00-10	Argentina	26	72	80	1.0	90	10
		Bolivia	38	63	68	1.7	63	37
		Brazil	28	68	76	1.1	83	17
		Chile	27	73	80	1.0	87	13
		Colombia	32	68	75	1.6	77	23
		Ecuador	35	73	79	1.9	62	38
		Paraguay	39	72	77	2.5	57	43
		Peru	34	68	71	1.5	74	26
		Uruguay	24	73	79	0.5	93	7
		Venezuela	32	71	77	1.4	88	12
	$\begin{aligned} & \mathbf{4} \\ & \frac{1}{0} \\ & \stackrel{0}{0} \end{aligned}$	Australia	20	77	83	0.5	92	8
		Bangladesh	34	62	62	2.2	24	76
		China	24	70	74	0.6	39	61
		India	33	63	65	1.4	28	72
		Iran	32	68	71	1.2	67	33
		Japan	15	78	85	0.1	79	21
		Russia	17	60	73	-0.6	73	27
		Thailand	23	70	74	0.9	32	68
		Turkey	28	70	75	1.1	66	34
		Vietnam	33	68	73	1.3	26	74
	$\begin{aligned} & 6 \\ & \frac{1}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Canada	19	77	84	0.3	80	20
		Costa Rica	31	74	79	1.5	61	39
		Cuba	21	75	79	0.5	76	24
		El Salvador	37	67	75	2.2	60	40
		Guatemala	42	64	66	2.8	46	54
		Haiti	40	51	53	2.0	38	62
		Jamaica	29	74	78	1.2	67	33
		Mexico	33	72	78	1.7	76	24
		Panama	30	70	75	1.4	69	31
		U.S.	21	75	80	0.6	80	20

Fascinating Facts

Smallest Countries by Population		
Country	Area (sq miles)	Population
Vatican City	0.17	900
Tuvalu	10	11,000
Nauru	8	13,000
Palau	177	20,000
San Marino	24	28,000
Monaco	0.75	32,000
Liechtenstein	62	33,000

Largest Cities by Population	
City, Country	Population
Tokyo, Japan	$34,450,000$
Mexico City, Mexico	$18,066,000$
New York City, U.S.	$17,846,000$
Sao Paulo, Brazil	$17,099,000$
Mumbai (Bombay), India	$16,086,000$
Calcutta, India	$13,058,000$
Shanghai, China	$12,887,000$

Languages with the Most Speakers		
Speakers (in millions)		
Language	873	Countries
Chinese	322	16
Spanish	309	43
English	180	107
Hindi	177	17
Portuguese	171	33
Bengali	145	9
Russian	122	31
Japanese		25

Cellular Telephone Use Number of Cellular Telephone Subscriptions (in millions)		
Taiwan	Subscriptions per 100 People	
Luxembourg	25.1	110.8
Italy	0.5	106.1
Iceland	55.9	101.8
Israel	0.3	96.6
Spain	6.3	95.5
United Kingdom	37.5	91.6
Greece	49.7	84.1
Japan	8.9	78.0
United States	86.7	68.0
Canada	158.7	54.3
Turkey	13.2	41.7
South Africa	27.9	40.8
World	16.9	36.4

Taiwan has the highest subscription rate for cellular telephone use of all countries.

Name					
Porld's Tallest Buildings					
Year Built	Height (feet)	Stories			
Taipei 101	Taipei, Taiwan	2004	1,670	101	
Petronas Towers, I and II	Kuala Lumpur, Malaysia	1998	1,483	88	
Sears Tower	Chicago, United States	1974	1,450	110	
Jin Mao Bldg.	Shanghai, China	1999	1,381	88	
Two International Finance Centre	Hong Kong, China	2003	1,362	88	
CITIC Plaza	Guangzhou, China	1996	1,283	80	
Shun Hing Square	Shenzhen, China	1996	1,260	69	
Empire State Building	New York, United States	1931	1,250	102	
Central Plaza	Hong Kong, China	1992	1,227	78	
Bank of China	Hong Kong, China	1989	1,209	72	

For more information and ongoing updates, go to the Web site http://en.wikipedia.org/wiki/World's_tallest_structures.

Taipei 101

Sears Tower

English Channel Tunnel

| Tunnel | | Place | Year Build |
| :--- | :--- | :---: | :---: | Length (miles)

Largest Oceans and Seas		
Area (sq miles)	Average Depth (feet)	
Pacific Ocean	$64,186,300$	12,925
Atlantic Ocean	$33,420,000$	11,730
Indian Ocean	$28,350,500$	12,598
Arctic Ocean	$5,105,700$	3,407
South China Sea	$1,148,500$	4,802
Caribbean Sea	971,400	8,448
Mediterranean Sea	969,100	4,926
Bering Sea	873,000	4,893
Gulf of Mexico	582,100	5,297
Okhotsk Sea	537,500	3,192

Longest Rivers		
Name		Location
Length		
(miles)		

Largest Deserts		
Name	Location	Area (sq miles)
Sahara	Africa	$3,500,000$
Gobi	Asia	500,000
Libyan	Africa	450,000
Patagonia	S. America	300,000
Rub al Khali	Asia	250,000
Kalahari	Africa	225,000
Great Sandy	Australia	150,000
Great Victoria	Australia	150,000
Chihuahua	N. America	140,000

Largest Freshwater Lakes		
Name	Location	Area (sq miles)
Superior	N. America	31,700
Victoria	Africa	26,828
Huron	N. America	23,000
Michigan	N. America	22,300
Tanganyika	Africa	12,700
Baykal	Asia	12,162
Great Bear	N. America	12,096
Malawi (Nyasa)	Africa	11,150

Tallest Mountains		
Name		Location
Height		
(feet)		

Highest/Lowest Elevation Points		
Continent	Highest/ Lowest Point	Elevation (feet)
Africa	Mt. Kilimanjaro, Tanzania	19,340
	Lake Assal, Djibouti	-512
	Vinson Massif	16,864
	Bentley Subglacial Trench	$-8,327$
Asia	Mt. Everest, Nepal-Tibet	29,028
	Dead Sea, ISrael-Jordan	$-1,312$
	Mt. Kosciusko, New S. Wales	7,310
	Europe	Lake Eyre, South Australia
	Mt. El'brus, Russia	-52
	Caspian Sea, Russia-Azerbaijan	18,510
N. America	-92	
	Mt. McKinley (Denali), Alaska	20,320
S. America	Death Valley, California	-282
	Mt. Aconcagua, Argentina	22,834
	Valdés Penninsula, Argentina	-131

Temperature and Rainfall Extremes	
Hottest single days	$136^{\circ} \mathrm{F}$, Azizia (Alaziziyah) Libya $134^{\circ} \mathrm{F}$ Death Valley, California
Hottest yearly average	$95^{\circ} \mathrm{F}$, Dalol Depression, Ethiopia
Coldest single days	$-129^{\circ} \mathrm{F}$, , Vostok, Antarctica $-90^{\circ} \mathrm{F}$, Oimekon, Russia
Coldest yearly average	$-72^{\circ} \mathrm{F}$, Plateau Station, Antarctica
Highest average yearly rainfall	467 in., Mawsynram, India 460 in., Mt. Waialeale, Kauai, Hawaii
Lowest average yearly rainfall	0.03 in., Arica, Chile Less than 0.1 in., Wadi Half, Sudan

Colombia has 1,700 known species of birds.

Top Countries for Mammals		
Country	Continent	Number of Known Species
Mexico	N. America	491
Peru	S. America	460
Indonesia	Asia	457
Congo, Dem. Rep.	Africa	450
United States	N. America	432
Brazil	S. America	417
Cameroon	Africa	409
China	Asia	400
Colombia	S. America	359
Kenya	Africa	359

Top Countries for Birds		
Country	Continent	Number of Known Species
Colombia	S. America	1,700
Peru	S. America	1,541
Indonesia	Asia	1,530
Brazil	S. America	1,500
Ecuador	S. America	1,388
Venezuela	S. America	1,340
China	Asia	1,103
Congo, Dem. Rep.	Africa	929
India	Asia	926
Argentina	S. America	897

Top Countries for Reptiles and Amphibians		
Country	Continent	Number of Known Species
Colombia	S. America	1,277
Brazil	S. America	1,072
Mexico	N. America	1,014
Australia	Australia	953
Ecuador	S. America	806
Indonesia	Asia	799
Peru	S. America	736
China	Asia	630
India	Asia	599
United States	N. America	550

Top Countries for Flowering Plants		
Country	Continent	Approximate Number of Known Species
Brazil	S. America	55,000
Colombia	S. America	50,000
China	Asia	30,000
Indonesia	Asia	27,500
Mexico	N. America	25,000
South Africa	Africa	23,000
Venezuela	S. America	20,000
Ecuador	S. America	18,250
Peru	S. America	17,000
Bolivia	S. America	17,000

National Flags

Mancala

Mancala is a 3,000-year-old game of strategy. It is popular throughout Africa and Asia. The game has a variety of names, and the rules vary slightly from country to country. The game is usually played using a wooden board with 12 cups carved into it. Seeds or beans are used as counters.
$\begin{array}{cl}\text { Materials } \quad \square \text { an egg carton or gameboard with } 12 \text { cups } \\ & \square 48 \text { counters, beans, or seeds }\end{array}$
Players
2

Directions

Players sit at opposite ends of the board. Each player places four counters in each of the six cups on his or her side of the board. (See diagram.)

To begin, Player 1 picks up all of the counters from one of the six cups on his or her side. Beginning with the next cup, Player 1 drops the four counters one at a time into each consecutive cup, moving counterclockwise around the board.

Player 2 does the same thing with counters from one of the cups on his or her side of the board. (Players always begin by picking up counters from a cup on their side of the board).

A player captures counters if both of these conditions hold true:

1. The last counter the player drops in a cup lands on the other player's side of the board.
2. It lands in a cup with one or two counters already there.

When this happens, the player picks up all the counters in that cup. These are set aside for counting at the end of the game. Players may only capture counters from their opponent's side of the board.

Play continues until one player has no counters left on his or her side of the board. At that time, players tally the number of counters captured, plus the number of counters remaining on their side of the board. The player with the most counters wins.

The gameboard at the start of play

Move counterclockwise as you drop counters into the cups.

Tchuka Ruma

This is a solitaire version of Mancala.
Materials \square an egg carton or gameboard with 5 cups
$\square 8$ counters
Player 1

Directions

The player places 2 counters in each of the first 4 cups. The cup on the far right remains empty. The empty cup is called the Ruma.

The player takes all of the counters from any cup and drops them one at a time into each consecutive cup, moving from left to right. If there are still counters in the player's hand after placing a counter in the Ruma, the player goes back to the cup at the far left and continues.

Move in the direction of the arrows as you drop counters into the cups.
If there are counters in the cup where the last counter is dropped, the player takes all of the counters (including the one dropped) and continues as before. The player drops the counters one at a time into consecutive cups, beginning with the next cup to the right. The player always moves from left to right. If there are still counters in the player's hand after placing a counter in the Ruma, the player returns to the cup at the far left and continues play.

If the last counter is dropped in the Ruma, the player can select any cup to begin the next move. The player takes all of the counters from this cup and drops them into other cups in the usual way.

If the last counter is dropped in a cup that does not have counters and is not the Ruma, the game ends and the player loses.
The player wins if he or she can get all of the counters into the Ruma.

Seega

This is a version of a traditional Egyptian game that is popular among young Egyptians today.
Materials $\quad \square$ Seega Game Mat (Math Masters, p. 503)
$\square 6$ markers (3 each of two colors)
Players 2

Directions

Each player takes 3 markers of the same color. To begin, players place their markers on the starting lines at the ends of the game mat. (See diagram.)

Players take turns moving one of their markers one or two squares.

- A marker can be moved to any open square that is next to it. Diagonal moves are OK.
- A marker can be moved two squares in any direction to an open square. Diagonal moves are OK, but a change in direction during the move is not allowed. Jumping over another marker is also not allowed.

Examples Moves allowed:

Examples Moves not allowed:

May not change direction.

May not jump a marker.

The first player to get his or her markers in a straight line is the winner. The line may be horizontal, vertical, or diagonal, but it may not be the player's starting line.

Sz'kwa

This is a Chinese children's game. Its name means "the game of four directions." In China, the game mat is often marked in the dirt or gravel, and pebbles, nuts, or shells are used as markers.

Materials

\square Sz'kwa Game Mat (Math Masters, p. 505)
$\square 40$ markers (20 each of two different colors)
Players 2

Directions

Each player takes 20 markers of the same color.
The game mat has 21 places where lines meet (called "intersections"). Players take turns. At each turn, a player places one marker on any intersection that is not already covered by a marker.
A marker is captured when it is surrounded by the opponent's markers. The captured marker is removed from the mat and kept by the opponent.

Green marker captured.

Two red markers captured.

Five red markers captured.

Play continues until players run out of markers or until there is no place left on the mat to put a marker without its being captured. The player who holds more captured pieces at this time is the winner.

Alleyway

This game is popular in Eastern Europe. The game mat is shaped like a semicircle with 25 numbered spaces. Space 13 is left open and is called the "alleyway."

Materials	\square Alleyway Game Mat (Math Masters, p. 456)
	$\square 1$ marker for each player
	$\square 1$ die
Players	any number

Directions

Players place their markers in the Start space. They take turns rolling the die and moving their markers. A player moves his or her marker forward on the game mat by as many spaces as there are dots showing on the die.

A player's marker may land on a space already occupied by another player's marker. If that happens, the opponent's marker must be moved back.

- If the marker is in one of the spaces numbered $1-13$, the opponent's marker must move back to the Start space.
- If the marker is in one of the spaces numbered $14-25$, the opponent's marker must move back 2 spaces.

If a marker lands on another player's marker when it is moved back, then the marker it lands on must also be moved back. Use the rules given above for moving it back.
If a player's marker lands exactly on space 25 , it must go back to space 14.

The winner is the first person to get beyond space 25.
 space 13 is the alleyway.

Patolli

The board game Patolli has been played in Mexico since at least 200 в.c. The game takes its name from the Aztec word for bean-patolli, which means common bean or kidney bean. We do not have any record of the exact game rules. But these rules will allow you to play a game that should be similar to the ancient game.

Materials

\square Patolli Game Mat (Math Masters, p. 495)
$\square 5$ flat beans (such as limas)
Mark one side of each bean with a dot.

$\square 12$ counters: • for 2 players, 6 counters per player

- for 3 players, 4 counters per player
- for 4 players, 3 counters per player

Each player should have counters of a different color from the other players.

Players
2-4

Directions

Players each place a counter on the HOME space nearest to them. Each player tosses the 5 beans. The player with the greatest number of dots showing goes first.

Players take turns tossing the beans and moving their counters.

- A counter is moved the same number of spaces as the number of dots showing on the beans. If all 5 dots are showing, the count is doubled, and the player moves the counter 10 spaces.
- A player who has more than one counter on the mat may move any one of these counters. But the player may only move one counter during a turn.
- If exactly one dot is showing, the player may place a new counter on his or her HOME space.

A counter is removed from the mat when it comes back to a player's HOME space after going all the way around the mat. The counter must land exactly on HOME. If a counter cannot land exactly on HOME, that counter may not be moved.
The first player to move all of his or her counters around the mat and back to HOME space wins the game.

Beans and counters for a 2-player game

Sprouts

John Conway, professor of mathematics at Princeton University, invented this paper-and-pencil game in 1967.

Materials $\quad \square$ paper and pencil
Players 2

Directions

On a piece of paper, draw 3 dots that are widely spaced apart. You can start with more dots, but 3 dots is a good number to use when learning how to play.

Players take turns drawing a line (curved or straight) connecting any two dots, or joining a dot to itself. A player completes his or her turn by drawing another dot anywhere on the new line.

These rules must be followed when drawing the connecting lines:

- No line may cross itself.
- No line may cross any other line that has been drawn.
- No line may be drawn through a dot.
- A dot can have no more than 3 lines coming from it. A good way to keep track of this is to draw a box around any dot that has 3 lines coming from it. (See below.)
The winner is the last player who is able to draw a connecting line.

Sample Play (for an incomplete game)

3 dots drawn

[^0]: *Data are for the year 2004. World population growth rate for the year 2004: about 1.2\% per year

