LESSON
11.1 Estimating Weights in Grams and Kilograms

A nickel weighs about 5 grams (5 g).
A liter of water weighs about 1 kilogram (1 kg).
In Problems 1-7, circle a possible weight for each object.

1. A dog might weigh about
$20 \mathrm{~kg} \quad 200 \mathrm{~kg} \quad 2,000 \mathrm{~kg}$
2. A can of soup might weigh about
$4 \mathrm{~g} \quad 40 \mathrm{~g} \quad 400 \mathrm{~g}$
3. A newborn baby might weigh about
3 kg
30 kg
300 kg
4. An adult ostrich might weigh about
1.5 kg
15 kg
150 kg
5. A basketball might weigh about
$0.6 \mathrm{~kg} \quad 6 \mathrm{~kg} \quad 60 \mathrm{~kg}$
6. The weight limit in an elevator might be about
$100 \mathrm{~kg} \quad 1,000 \mathrm{~kg} \quad 10,000 \mathrm{~kg}$
7. A pencil might weigh about
$4.5 \mathrm{~g} \quad 45 \mathrm{~g} \quad 450 \mathrm{~g}$
8. Choose one of the problems above. Explain why you chose your answer.

LESSON
 11.1 Metric and Customary Weight

The number line below has ounces on the top and grams on the bottom.
It shows, for example, that 7 ounces are about equal to 200 grams.

ounces

Use the number line to give the approximate weight of each object in grams.
1.

15 ounces
2.

16 ounces

About \qquad grams
About \qquad grams
3.

8 ounces
4.

2.3 ounces

About \qquad grams
About \qquad grams

Use the number line to give the approximate weight of each object in ounces.
5.

100 grams
6.

500 grams
About \qquad ounces
About \qquad ounces
7.

140 grams
8.

454 grams

About \qquad ounces

About \qquad ounces

Math Boxes

1. a. Explain how you know that the pattern below is an example of a translation.

b. Draw the figure after it is translated to the right.

2. Find the solution of each open sentence.
a. $\frac{6}{7}-y=\frac{4}{7}$
$y=$ \qquad
b. $\frac{3}{10}+a=\frac{9}{10} \quad a=$ \qquad
c. $\frac{3}{5}-r=\frac{1}{10} \quad r=$ \qquad
d. $\frac{3}{4}+m=\frac{7}{8}$
$m=$ \qquad

3. Insert parentheses to make each number sentence true.
a. $14 * 18-15=42$
b. $13-6 * 5=56-21$
c. $48 / 6+2=10-4$
d. $150 / 10+5<4 * 4$

4. Circle the numbers that are multiples of 6 . Put an X through the numbers that are multiples of 5 .

38
84
150
198
540
3,500
5. If you use an average of 7 sheets of paper per day, about how many sheets would you use in
a. 1 week? \qquad sheets
b. 4 weeks? \qquad sheets
c. 52 weeks? \qquad sheets
d. 2 years? \qquad sheets

LESSON
 $11 \cdot 2$
 Geometric Solids

Geometric shapes like these 3-dimensional ones are also called geometric solids.
Rectangular Prism

Cylinder

Triangular Prism
Cone

Sphere

Square Pyramid

SRB
101102

Look around the classroom. Try to find examples of the geometric solids pictured above. Draw a picture of each. Then write its name (for example: book).

Example of rectangular prism:	Example of cylinder:	Example of triangular prism:
Name of object:	Name of object:	
Example of cone:	Example of sphere:	Name of object:
Name of object:		Example of square pyramid:

LESSON
 $11 \cdot 2$ Modeling a Rectangular Prism

After you construct a rectangular prism with straws and twist-ties, answer the questions below.

1. How many faces does your rectangular prism have? \qquad face(s)
2. How many of these faces are formed by rectangles? \qquad face(s)
3. How many of these faces are formed by squares? \qquad face(s)
4. Pick one of the faces. How many other faces are parallel to it? \qquad face(s)
5. How many edges does your rectangular prism have? \qquad edge(s)
6. Pick an edge. How many other edges are parallel to it? \qquad edge(s)
7. How many vertices does your rectangular prism have? \qquad vertices
8. Write T (true) or F (false) for each of the following statements about the rectangular prism you made. Then write one true statement and one false statement of your own.
a. \qquad It has no curved surfaces.
b. \qquad All of the edges are parallel.
c. \qquad All of the faces are polygons.
d. \qquad All of the faces are congruent.
e. True \qquad
f. False \qquad
9. Estimate how many of each coin you think it will take to make a 1-ounce weight. Then use a balance or scale to determine exactly how many of each coin are needed.

Coin	Estimated Number of Coins	Actual Number of Coins
penny		
nickel		
dime		
quarter		

2. Describe how you estimated how many of each coin it might take to make a 1-ounce weight.

Try This

3. About what fraction of an ounce does each coin weigh?

1 penny $=\ldots$ oz 1 nickel $=\ldots$ oz 1 dime $=\ldots$ oz 1 quarter $=\ldots$ oz

Explain how you found your answers.
\qquad
\qquad
\qquad

Math Boxes

1. The object below has the shape of a geometric solid. What is the name of the solid? Circle the best answer.
A. rectangular prism
B. cone
C. cylinder
D. square pyramid

2. Write a number model to estimate the answer. Then correctly place the decimal point.
a. $0.97 * 4=388$

Number model: \qquad
b. $187=74.8 \div 4$

Number model: \qquad
5. Round each number to the nearest tenth.
a. 2.34
b. 0.68 \qquad
c. 14.35 \qquad
d. 1.62 \qquad
e. 5.99 \qquad

2. Draw the figure after it is rotated clockwise $\frac{1}{4}$-turn.

SRB
106107
4. Insert $<,>$, or $=$ to make a true number sentence.
a. -12 \qquad -19
b. -44 \qquad 26
c. -64 \qquad -0.43
d. $-\frac{1}{2}$ \qquad $-\frac{4}{8}$
e. -0.28 \qquad -0.37
6. A cinnamon raisin bagel has about 230 calories. How many calories are in one dozen bagels?

About \qquad calories

LESSON
 $11 \cdot 3$
 Construction of Polyhedrons

Polyhedrons are geometric solids with flat surfaces formed by polygons.
For each problem below-

- Decide what the polyhedron should look like.
- Use straws and twist-ties to model the polyhedron.
- Answer the questions about the polyhedron.

Look at page 102 of the Student Reference Book if you need help with the name.

1. I am a polyhedron.

I have 5 faces.
Four of my faces are formed by triangles.
One of my faces is a square.
a. After you make me, draw a picture of me in the space to the right.
b. What am I?
c. How many corners (vertices) do I have?
d. What shape is my base?
2. I am a polyhedron.

I have 4 faces.
All of my faces are formed by equilateral triangles.
All of my faces are the same size.
a. After you make me, draw a picture of me in the space to the right.
b. What am I?
c. How many corners (vertices) do I have?
d. What shape is my base?

LESSON
 $11 \cdot 3$
 Drawing a Cube

Knowing how to draw is a useful skill in mathematics. Here are a few ways to draw a cube. Try each way. Tape your best work at the bottom of page 295.

A Basic Cube

Draw a square.

Draw another square that overlaps your first square. The second square should be the same size as the first.

Connect the corners of your 2 squares as shown.
This picture does not look much like a real cube. One problem is that the picture shows all 12 edges, even though not all the
 edges of a real cube can be seen at one time. Another problem is that it is hard to tell which face of the cube is in front.

A Better Cube

Begin with a square.

Next, draw 3 parallel line segments going right and up from 3 corners of your square. The segments should all be the same length.

Finally, connect the ends of the 3 line segments.

This cube is better than before, but it shows only the edges and corners, not the faces. If you want, try shading your cube to make it look more realistic.

LESSON
 $11 \cdot 3$
 Drawing a Cube continued

A Cube with Hidden Edges

Sometimes people draw cubes and other shapes with dashed line segments. The dashed line segments show edges that are hidden. Here is one way to draw a cube with hidden edges. Use a pencil.

Draw a square.

Draw a faint square that overlaps your first square.
The second square should be the same size as the first.

Connect the corners of your 2 squares with faint line segments.

Trace over 5 of your faint line segments with solid lines and 3 with dashed lines. The dashed line segments show the 3 edges that are hidden.

Tape your best work here.

1. Draw the figure after it is translated to the right.

2. Find the solution of each open sentence.
a. $\frac{7}{8}-s=\frac{1}{8} \quad s=$ \qquad
b. $t+\frac{1}{4}=\frac{1}{2} \quad t=$ \qquad
c. $\frac{3}{10}-m=\frac{1}{5} \quad m=$ \qquad
d. $\frac{2}{8}+x=\frac{3}{4} \quad x=$ \qquad
3. Name the first ten multiples of each number.
a. 6 \qquad , \qquad , \qquad , \qquad , \qquad , \qquad , \qquad -
b. 86 \qquad
\qquad
\qquad , \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

4. Insert parentheses to make each number sentence true.
a. $98.3+1.7 * 2.5=250$
b. $21.7 / 3+4=3.1$
c. $56.3+3.7 * 3>5 * 30$
d. $13.8-8.3=26.15-23.4 * 2$
5. Gum costs $\$ 0.80$ per pack. What is the cost of
a. 4 packs of gum? \qquad
b. 10 packs of gum? \qquad
c. 16 packs of gum? \qquad
d. 33 packs of gum? \qquad

Math Boxes

1. The object below has the shape of a geometric solid. Name the solid.

2. Write a number model to estimate the answer. Then correctly place the decimal point.
a. $7.56 * 4=3024$

Number model: \qquad
b. $563.2 \div 4=1408$

Number model: \qquad
5. Round each number to the nearest tenth.
a. 3.46 \qquad
b. 0.71 \qquad
c. 4.35 \qquad
d. 9.60 \qquad
e. 22.89 \qquad
2. Draw the figure after it is rotated counterclockwise $\frac{1}{4}$-turn.

4. Insert $<,>$, or $=$ to make a true number sentence.
a. $\quad-14$ \qquad -6
b. $-123 \quad-241$
c. $-8.9 _-5.7$
d. $-\frac{1}{4}$ \qquad $-\frac{2}{5}$
e. $-\frac{3}{9}$ \qquad $-\frac{1}{3}$
6. Jake can ride his bike 5 miles in 40 minutes. At this rate, how long does it take him to ride 1 mile? Circle the best answer.
A. 200 minutes
B. 40 minutes
C. 20 minutes
D. 8 minutes

1. Write a formula for the area of a rectangle. In your formula, use A for area. Use $/$ and w for length and width, or b and h for base and height.
\qquad
2. Draw a rectangle with sides measuring 3 centimeters and 9 centimeters. Find the area.

Number model: \qquad
\qquad square centimeters
3. Find the height of the rectangle.

Number model: \qquad
height $=$ \qquad m
4. Find the length of the base of the rectangle.

Number model: \qquad
length of base $=$ \qquad in.

Try This

5. Find the area of the rectangle.

Number model: \qquad
Area $=$ \qquad cm^{2}
6. Find the height of the rectangle.

Number model: \qquad
height $=$ \qquad cm

1. What is the total number of cubes needed to completely fill the box?
\qquad cubes

2. When you roll a 6-sided die, about what fraction of the time would you expect
a. a multiple of 2
to come up? \qquad
b. a factor of 20
to come up? \qquad

3. Add.
a. $-54+28=$ \qquad
b. $\quad-62+(-15)=$ \qquad
c. \qquad $=51+(-139)$
d. \qquad $=-\$ 23.56+\$ 87.45$
e. $\$ 71.08+(-\$ 85.79)=$ \qquad
4. If 4 shirts cost $\$ 76$, what is the cost of
a. 2 shirts? \qquad
b. 6 shirts? \qquad
c. 1 dozen shirts? \qquad
d. 75 shirts? \qquad _
a. $13 \mathrm{ft}=$ \qquad yd \qquad ft
b. $\quad 18 \mathrm{ft} 6 \mathrm{in}=$. \qquad yd \qquad in.
c. 972 in. $=$ \qquad yd
d. $15,840 \mathrm{ft}=$ \qquad mi
e. $24,640 \mathrm{yd}=$ \qquad mi

d. 75 shirts?

Each picture at the bottom of this page and on the next page shows a box that is partially filled with cubes. The cubes in each box are the same size. Each box has at least one stack of cubes that goes to the top.

Your task is to find the total number of cubes needed to completely fill each box.
Record your answers in the table below.

Table of Volumes

Placement of Cubes	Box 1	Box 2	Box 3	Box 4	Box 5	Box 6
Number of cubes needed to cover the bottom						
Number of cubes in the tallest stack (Be sure to count the bottom cube.)						
Total number of cubes needed to fill the box						

Box 1

Box 2

Box 3

Box 5

Box 4

Box 6

Formula for the volume of a rectangular prism:
B is the area of a base.
h is the height from that base.
Volume units are cubic units.

LESSON
 11.5 Cube-Stacking Problems continued

Find the volume of each stack of centimeter cubes.
1.

Volume $=$ \qquad cm^{3}
3.

Volume $=$ \qquad cm^{3}
2.

Volume $=$ \qquad cm^{3}

Volume $=$ \qquad cm^{3}
5. Choose one of the problems from above. Describe the strategy that you used to find the volume of the stack of centimeter cubes.
\qquad
\qquad
\qquad

Try This

6.

2 cm
7.

Number model: \qquad
Volume $=$ \qquad cm^{3}

1. a. What was the heaviest item in the class Gram and Ounce Museum? \qquad
b. How much did it weigh? \qquad grams \qquad ounces
2. a. What was the lightest item in the class Gram and Ounce Museum? \qquad
b. How much did it weigh? \qquad grams \qquad ounces

Complete.
3. $6 \mathrm{~g}=$ \qquad mg
4. \qquad $\mathrm{g}=7,000 \mathrm{mg}$
5. $3 \mathrm{~kg}=$ \qquad g
6. \qquad $\mathrm{kg}=8,000 \mathrm{~g}$
7. $2.9 \mathrm{~g}=$ \qquad mg
8. \qquad $\mathrm{kg}=4,500 \mathrm{~g}$
10. \qquad $\mathrm{lb}=144 \mathrm{oz}$
9. $6 \mathrm{lb}=$ \qquad oz
11. $3.5 \mathrm{lb}=$ \qquad oz
12. $8 \mathrm{~T}=$ \qquad lb

Use the Rules of Thumb below to solve Problems 13-15. Write number models to show how you estimated.

Rules of Thumb

1 kilogram equals about 2.2 pounds
1 ounce equals about 30 grams
13. A video camera weighs about 120 grams. About how many ounces is that?

Number model: \qquad
\qquad
14. A baby weighs about 3.5 kilograms at birth. About how many pounds is that?

Number model: \qquad
\qquad lb
15. An African elephant weighs 11,023 pounds. About how many kilograms is that?

Number model: \qquad kg

1. The object below has the shape of a geometric solid. Name the solid.

\qquad

2. Write a number model to estimate the answer. Then correctly place the decimal point.
a. $6 * 32.9=1974$

Number model: \qquad
b. $329=98.7 \div 3$

Number model: \qquad
5. Round 8.99 to the nearest tenth. Circle the best answer.
A. 8.0
B. 9.0
C. 9.1
D. 8.09

2. Which figure below shows the original figure rotated clockwise $\frac{1}{2}$-turn?

Original

A

B

C

4. Insert $<,>$, or $=$ to make a true number sentence.
a. $\quad-34$ \qquad -9
b. $\quad-89$ \qquad -99
c. -2.99 \qquad -2.9
d. $-\frac{1}{4}$ \qquad $-\frac{1}{3}$
e. $-\frac{18}{9}$ \qquad $-2 \frac{1}{4}$
6. It takes 2 cups of flour to make about 20 medium-size peanut butter cookies. How many cups of flour will you need to make about
a. 40 cookies? \qquad cups
b. 60 cookies? \qquad cups
c. 50 cookies? \qquad cups
d. 740 cookies? \qquad cups

11-7 Converting Measurements

Math Message

1 pint $=$	cups
1 quart $=$	pints
1 half-gallon $=$	quarts
1 gallon $=$	quarts

Think: How can the picture above help you remember how many cups are in a pint, how many pints are in a quart, and how many quarts are in a gallon?

Rice Consumption

1. Round your answer to the nearest ounce.

One cup of dry (uncooked) rice weighs about \qquad ounces.
2. Use the answer in Problem 1 to complete the following:
a. 1 pint of rice weighs about \qquad ounces.
b. 1 quart of rice weighs about \qquad ounces.
c. 1 gallon of rice weighs about \qquad ounces.
d. 1 gallon of rice weighs about \qquad pounds. (1 pound $=16$ ounces)
3. On average, a family of 4 in Bangladesh eats about 170 pounds of rice per month.
a. That is about how many pounds per year? \qquad pounds
b. How many gallons? \qquad gallons
4. On average, a family of 4 in the United States eats about 120 pounds of rice per year.
That is about how many gallons per year? \qquad gallons
5. On average, a family of 4 in Thailand eats about $3 \frac{1}{2}$ gallons of rice per week.
a. That is about how many gallons per year? \qquad gallons
b. How many pounds? \qquad pounds

LESSON
 $11 \cdot 7$
 Largest Cities by Population

1. Use the data in the Largest Cities by Population table at the top of Student Reference Book, page 302 to complete the bar graph. Round each figure to the nearest million.

Largest Cities by Population

2. Make three statements comparing the cities in the bar graph.

Example: About 21 million more people live in Tokyo than in Shanghai.

LESSON
 $11 \cdot 7$
 Math Boxes

1. What is the total number of cubes needed to completely fill the box?
\qquad cubes

2. When you roll a 10-sided die, about what fraction of the time would you expect a multiple of 3 to come up?

Use a probability term to describe the likelihood of this event.
\qquad

4. Complete.
a. $321 \mathrm{~cm}=$ \qquad m
b. $56 \mathrm{~cm}=$ \qquad mm
c. $\quad 14 \mathrm{ft} 4 \mathrm{in} .=$ \qquad in.
d. $2 \mathrm{mi}=$ \qquad ft
e. $5.3 \mathrm{~km}=$ \qquad m
f.
$\mathrm{mi}=7,040 \mathrm{yd}$

6. If you travel at an average speed of 50 miles per hour, how far will you travel in
a. 3 hours? \qquad miles
b. $\frac{1}{2}$ hour? \qquad miles
c. $2 \frac{1}{2}$ hours? \qquad miles
d. $5 \frac{3}{5}$ hours? \qquad miles

1. If you use the telephone an average of 4 times per day, about how many times would you use it in
a. 1 week? \qquad times
b. 4 weeks? \qquad times
c. 52 weeks? \qquad times

2. Pears cost $\$ 0.55$ each. What is the cost of
a. 4 pears? \qquad
b. 10 pears? \qquad
c. 18 pears? \qquad

3. Michelle can run 5 miles in 35 minutes. At this rate, how long does it take her to run 1 mile?
\qquad minutes
4. A cup of orange juice has about 110 calories. About how many calories are in a quart of orange juice?
\qquad calories
5. If you walk at an average speed of 3.5 miles per hour, how far will you travel in
a. 2 hours? \qquad miles
b. 6 hours? \qquad miles
c. $\frac{1}{2}$ hour? \qquad miles

6. Round each number to the nearest tenth.
a. 5.87 \qquad
b. 0.32 \qquad
c. 9.65 \qquad
d. 3.40 \qquad
e. 93.29 \qquad

